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This solution is the same as (4. 4), except for the expression for pressure,
4.2,7. The last subgroup with operator X; - X, generates the solution w =
e W) o =0 + ®(r) and p =€ P (r).
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The self-similar axisymmetric problem of penetration of a blunt rigid cone into
a half-space of perfect compressible fluid is considered in linear formulation.

The problem of penetration of a blunt cone into an incompressible fluid was
investigated theoretically [1—4] and experimentally [3, 5). This problem was
solved for a compressible fluid in [6] on the assumption that the radius of the
intersection circle between the cone and the unperturbed fluid surface {nctreases,
when the penetration velocity exceeds the speed of sound in the fluid (the super-
sonic case),

An exact analytical solution of this problem in the subsonic case is derived
here with allowance for the rise of the fluid free surface in the cone neighbor-
hood, The distribution of pressure and forces acting on the cone is presented in
terms of elementary functions, and the rate of increase of the cone wetted sur-
face radius is determined, It is shown that in the limit case of incompressible
fluid the obtained results coincide with published data, while in the other limit
case the derived solution coincides with that for the case of supersonic penetra-
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tion. The obtained solution is compared with that known in the theory of incom-
pressible fluid,

1, Statement of the problem, The problem of penetration of a rigid cone
with vertex angle t — 2f at velocity v, into a perfect compressible fluid which at rest
occupies the half-space z > 0 (Fig. 1), The velocity v, of the cone is directed along its
axis which is perpendicular to the plane
z2 =0 andisassumed tobe ¥ << a (a
is the speed of sound in the fluid at rest),

It is further assumed that § <€ 1 (a blunt
cone) and that during its penetration into
the fluid the density of the latter varies in-
significantly, The subsonic case in which
vo ctg B < a is considered, This problem

Fig. 1 is, evidently, axisymmetric and self-similar,

It will be readily seen from the physical

pattern of flow that the fluid free surface in the vicinity of the cone will rise during
penetration, thus increasing the cone wetted surface, Hence the correct statement of
the problem requires the allowance for the rise of the fluid which, owing to the small-
ness of angle f, can substantially increase the cone wetted surface. We denote the un-
known radius of the wetted surface by ct (Fig. 1), where ¢ is the time and ¢t is the
distance of the point of contact of the fluid free surface from the cone axis (we neglect
the effect of the spray stream, since for smail § the vertical component of the spray
stream momenturn is small [3]). The self-similarity of the problem implies that ¢ =
const, In solving the hydrodynamic problem we shall provisionally assume that ¢ is a
given value. Linearizing the equations of motion of the fluid and the boundary condi-
tions [2], for the velocity vector v= {v, (¢, r, z), v, (¢, 7, 2)} and pressure p (¢, r,
z) we obtain the following system of equations and initial and boundary conditions ;

Av = 0%v/a*0t?, Ap = &%p/a*dft for 2 >0,t >0
v = ov/dt =0, D = 6p [ 8t =0 for t =0 (1.1)
v: =9 for 2 =0,0<r<<ct,p =0 forz =0,ct<r

where v and p are related by linearized Euler equations, Furthermore, we stipulate
that p — 0 and v — 0 for r2+ 22— o0, and that p and v are integrable in the
neighborhood of the boundary of the cone wetted surface at z =0 and r=ct , and.at the cone
vertexat z =0 and r=0, since this is necessary, if a unique solution is to be obtained.
The solution of system (1.1) contains parameter ¢ which is determined by Wagner's

method [3], using the kinematic relationship

¢ :
— Sv, (v, ¢t, 0Ydt + vt =cttgR (1.2)

0
between the motion of a particle of the free surface (r* in Fig, 1) and that of the cone,

2. Relation between axisymmetric and plane problems, and the
method of functionally=invariant solutions, A method of reducing axi-
symmeuic problems involving wave equations to plane problems was proposed by V, 1,
Smirnov and S, L, Sobolev (see Chapter 12 in [7]) by which the solution of the axisym-
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memwic problem is derived by the superposition of solutions of plane problems, We in-
woduce the system of Cartesian coordinates nz at angle ® to the z-axis, so that
§=zcos o+ ysine =rcos (p —w), n = —zsine +ycoso =
rsin (¢ — @)
where r, @ and z represent a system of cylindrical coordinates related to the zyz sys-
tem by formulas: r =rcos¢,y =rsin @ and z =z.
Let us consider in the system of coordinates §vnz the plane solution of the linearized
equations of motion of a perfect fluid, such that the velocity vector v, and pressure p,
are independent of 1) and which satisfy the wave equation

O*/0k® + 9%f/9z® = 3%/a*ot*

with the velocity vector v, lying in the &z -plane and v; = {v;:, v;,}. Then the
expressions n n

v={ vit. 8. 29do  ana p= {py(t. & 2)do (2.1)

—-—TC —Tt

represent the solution of a certain three-dimensional problem with linearized equations
of motion of a perfect fluid, since they are the resujt of superposition of solutions of
equations of motion, In this case functions v and p satisfy the wave equation with
three spatial variables z, ¥ and z, For the velocity com"ponents v, ¥, and v, and
for pressure p we obtain the following expressions (after substituting ¢ — 0 = Q
and taking into account the periodicity of integrands in (2,1) with respect to Q):

v, = ZSvlg(t, rcos Q, z)cos QdQ, v, = 2S Uy, (2, rcos Q, 2)dQ
0 0

vo=0, p=2 Sp, (¢, rcos Q, z) dQ (2.2
[

Hence velocity v and pressure p are independent of @, i.e, they are solutions of a
certain axisymmetric problem with linearized equations of motion of a perfect fluid
and satisfy the wave equation

a°f | 0z + of | dy? + 0*f | 62 = 3% | a*ot®

It can be shown that formulas (2. 2) establish a one-to-one relationship between solu-
tions of plane and axisymmetric problems (*). As in the self-similar problem consi-
dered in Sect, 1, v and p are homogeneous functions of coordinates and of the time of
zero reading, hence. the plane solutions v, and p; must, also, be homogeneous functions

of the time of zero reading, and by the Sobolev-Smirnov method of functionally-invariant
solutions {7] can be represented by

513 (t, g, 2) = ReV (9), vz (8§ 2) = Re W(e)
p1 (¢ & 2) = Re U (6) (2.3)

where U (8), V (8) and W (6) are analytic functions in region Im6 >>’0,and 6 is
implicitly determined by the equation '

*) B.V.Kostrov, Certain dynamic problems of the mathematical theory of elasticity.
Candidate's dissertation, Moscow, 1964,
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b=t—0t—z)Ya’—0=0 (2.4)

The branch of the radical is fixed as follows: the §-plane is cut along the intervals of
the real axis (— oo, —a™?] and [e2™!, 4-o00) and the radical is assumed positive at

= 0. Equation (2.4) maps the upper semicircle z >0, z2 + E? << a?#® of the real
half-plane ¥z on the upper half-plane of the complex variable 8, the semicircle 22 +-
§® = a%? onsegment [ —qg~1, g1] of the real axis, and segment [ — at, at| on the
remaining part of the real axis, According to [7] the plane solution obtained inside the
semicircle continuously passes through the arc of circle 22 4 £ = a®*#*® into the exte-
rior of the semicircle along the half-tangents defined by Eq, (2.4), because § , as a solu-
tion of (2. 4), is constant along the latter (it is assumed that for z > a¢ the plane
solution is identically zero), The derived plane solution is, thus, the general solution of
the wave equation [7]

Substituting expressions (2, 3) into (2, 2), for the velocity components ».and v, , and
pressure p in the self-similar axisymmetric problem we obtain the following formulas :

v, =2Re{V(®)cos QdQ, v, =2Re{W ®)dQ
0 [}

"

p=2Re S U (8) dQ ' (2.5)

0

where 6 is implicitly determined by (2.4) for § =71 cos Q or, for the chosen branch
of the radical (a™®> — 03)": and half-tangents, explicitly by formulas

9 __atrcosQ + iz Va3t — 22 — P cos? Q
- a (r? cos2 Q -+ z3)

for a**>r3cos? Q + 2z

6 = atrcos Q4+ z V¥ z2 + ricos? Q — a2
- a (récostQ + 22)

for a*t*<{r*cos®Q + 23, z<Zlat (2.6)

The signs plus and minus in the second of formulas (2. 6) relate, respectively, to
cos Q << 0 and cos Q >> 0, and the radicals in the two formulas are considered to be
arithmetic (setting for z ~> at in formulas(2.2) v, = 0 and p, = 0, we obtain
v=0and p=0).

Since v, and p, satisfy the linearized Euler equations

'6vulc9t = — dp, / poz, dvye | 8t = — dp, / ot

(where p is the density of the unperturbed fluid), functions U (6), V (6) and W (6)
are not independent, The Euler equations are, obviously, satisfied when

V' (@) =U' (0)6/p, W' (8) =U’ (6) ]/-a‘2 —8%/p (2.7)
Thus the solution of the self-similar axisymmetric problem for v and p is sought in

the form (2. 5) in which U (6), V' (6) and W (0) are regular functions in the region
lm 6 > 0 and related by formulas (2, 7), with @ determined by (2.4) or (2.6).

8, Solution of the problem, For solving the considered axisymmetric prob-
lem we use the method proposed in [8] for solving similar problems of elasticity, Differ-
entiating Eqgs, (2, 5) for v. and p with respect to f, at z= () we obtain
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”

ap U’ @) dvs _ e,
% =2Re{—pde. G =2Re \rcosQ G4

0
We introduce into Egs, (3.1) the new variable v defined by formula § = v: by slit-
ting plane v along the positive semiaxis {0, 4~c0). The half-plane Im 6 > 0 is then
imaged in plane v with slit [0, + o). Taking into account Eq, (2. 7) which relates
U’ (0) and W' (), from (3.1) we obtain

P‘GS F' (v)dw r op ReS FrivyVaiev

- VV—‘Vo

1/-\’—”0 T:?T’
ve=28/r  U®) =Unh)=F @

where F (v) mustbe aregular function in the plane v outside the slit [0, 4 20), For
the branch of radical (a7 — v)"* the slit is made along the interval of the positive
semiaxis [a~%, 4+ oo) and the radical is assumed positive for v = 0; to separate the
single-valued branch of radical (v — v,)"s we make the slit [v,, + oo) and assume
the radical tobe equal n1 /2 forv = 0, The contour [ (Fig. 2) is obtained as fol~
lows. The contour [, along which the integration path [0, =] of formulas (2.5) for

dv =25 (3.2)

®

1

4
-d) (@)
Fig, 2 Fig, 3

z > O passes in the § -plane is shown in Fig, 3, For 2 = 0 (z = - 0) the ends of
contour [y (points L and K) lie within segment [—g~1, g~!] and are symmemric about
the origin 6 = 0. Hence the substitution 6 = +v': converts contour [, into contour

I which can be represented by a circle of an arbitrary radius R (owing to the analyti-
city of F (v) outside the slit [0, 4 o)) and two equal length segments K7 and
LT along the lower and upper edges, respectively, of the slit [0, 4+ oo), with points
K and L coinciding with point v = v,.

To satisfy the initial conditions for Egs, (3, 2) it is necessary that for vo < a™ % the
integration contour / can be contracted to a single point, i, e, function /' (v) must be
analytic outside the slit [¢™%, + ©0). In accordance with boundary conditions the ex-
pressions for dp / dt appearing in (3,2) must vanish for v, << ¢™%, hence F’ (v) must
be a regular function outside the slit [¢™2, 4 oc). Since the derivative dv_ / 9t in
(3.2) must vanish for v, >> ¢~%, the integrand in this expression must be analytic for
Re v > vy > ¢ and decrease at infinity as o (v™1) in order that the integral along
the circumference vanishes for R — co. We can now set
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FFv)y=A® (=™
where ~ is an integer and 4 (V) is an entire analytic function which does not vanish
for v =c™3. The condition of integrability of pressure at the edge of the cone wetted
surface implies that n < 2. It will be readily seen from this that 4 (V) must be bound-
ed: 4 (v) = 4 = const and n = 2. We thus have

F(v) = Ave (=) + o
For z = 0, similarly to formulas (3, 2), we have

_— F(¥)dv - V\'o 1
p=VVoRG Sm, Uy = = BIS—-—————VV.V_VO X

[SF’ ) Vat<pdp+ c,] dv 2.3
0

Integration in (3, 3) with respect to & is carried out along the contour which lies on the

same side of the real axis as point u =w. It follows from (3, 3) that, if the initial conditions

are to be satisfied, it is necessary for the integrands in (3. 3) to be analytic at point

v =0, i,e, ¢, = ¢, = 0 and, consequently,

F (v) = Ave? (¢ — v)?

which brings formulas (3, 3) to the form (3.4)
v —n.t Adv _Ywp (__Adv S Vei—p .
p=¢ Vv°Rel)(c-2—v) View' - RGSVVV-—Voo("q“V')" "

Formulas (3, 4) show that p vanishes for vy << ¢, Let us determine constant A from
the boundary condition that v, = v, for Vo > ¢™> and z = 0. We have

.v S ——
V-"_"-Reg Adv S'Va"*--p.dp.=v
V‘V—‘Vo (c-z—p')z 0

where the integral with respect to p can be expressed by

cYVE—p V=g Vai—p
(- (s (FS a4 r0
0

veo

B = —c [y + (1 — y) ™ arc cos (y)], y = c*a?

The second integral is integrated along the half-line arg u = arg v. Since F, )
changes its sign at transition through the slit [¢™3, 4 oo), hence ’

Fy (V) dv O -9
—— £ v c
lSv Vv 0 for V>
and we obtain 1, = 2.‘rABp"1. From which
4= — o V—i'—T (35}
AGc{ V7 =7 +arccos V7]

For the distribution of pressure p at the cone wetted surface (vy > ¢™%) we obtain
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— oopelt V1—7
P Ve —a (VTa=D gt wecs V7] 3.6)
where p has an integrable singularity at r = ct.
To determine the pressure at any point. of the half-space : > 0 we substitute the vari-
able p = (a”* — 6%)"* into formula (2.5) for p and, using the branch of the radical
(@~ — 8%)", for g% > r? + 2% we obtain

240°R S (207 —ty) dps
p= e 7 (¢ ™3 — a™ - p?) [r2a™2 — £2 -+ 2tzp — 2 (12 4 2%}

3.7

The contow {, in region Re p > 0 is shown in Fig. 4 and 4 is defined by formula (3,5).
At points K and L we have, respectively, p = u, and

l @ p = p,, where u; and p, are roots of the quadratic tri-
K/_‘\ nomial of the radical appearing in (3. 7).
A__ 8 N To determine the single~valued branch of the radical
[4 L \(a'u in (3. 7), we make a slit in the p-plane between points
| L and K (shown in Fig, 4 by the dash line) and take that
branch of the radical.whose argument for real p greater

Fig, 4 than ¢7! is equal n/2, Then, taking into account that
along the different edges of the slit the integrand in (3.7)
is of the same absolute value but of opposite signs and has two simple poles at points
W = +i(c~2—q"?)"2,and using the residue theorem, from (3. 7) we finally obtain

- Vm_ﬂ"'_ s (LEEER A 40
p=— s «(LTERESR ) — i (R ] 09

P42 e, Ag=z (P—ah) 4+ 7 — 12, By= 21z ((c"t — oY)

where the radicals are assumed to be arithmetical, In particular, for z — 0 and r > ¢t
the right-hand side of (3, 8) vanishes, while for z — 0 and r < ¢t it coincides with for-
mula (3,6). Note that for r: -+ z* — a%* formula (3. 8) yields zero, while for ¢ —~ a
from (3. 5) we obtain 4 —~ — wp / (4 na), and at the limit (3, 8) yields

_ vopa®t a®t? —rl — 2

pP=3 (a2 — r2)'hs

This formula is the same as the limit formula obtained in the solution of the problem
of a blunt cone penetration into a compressible fluid for ¢ = v, ctg § > a, when

voctg B — a [6]. In the other limit case (a — oc) formula (3, 8) yields pressure distri-
bution for the case of incompressible fluid.

The velocity components v; and v, in region r* + 22 < a%* can be determined in 2
similar manner, Note that for r* 4+ 2* > a¥*? (3< at) functions v, v, and p vanish,
since the end-points X and L of the integration contour I, in the p-plane are at one
and the same point lying on the real axis segment |0, ™| in that plane (since in the 6 -
plane they lie on segment [—a~%, g7!] and are symmetric about point § = 0). Conse-
quently, by the Cauchy theorem the integrals over the closed contour I, vanish,

Let us determine the rate of increase of the radius of the wetted surface ». Formula
(3. 4) for v, at the free surface (vo<<c™®) with allowance for (3, 5) assumes the form
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ct ct(1—r)

v, ==, {1 —(VY{ — 1)+ arccos YV 7)? [arccos =+ V__——-—_WJ}H“H —r)

where H (at — r) is the Heaviside unit function, Substituting this expression for v,
into (1.2) and integrating, we finally obtain the expression

1
¥+ ¥ (1 — 9) % arc cos (y¥1) = 2ua7! ctg B (3.9
which defines the relationship between p,q~! ctg 3 and y . The numerical solution
of Eq. (3. 9) is presented in Fig, 5 in the form of a curve showing the dependence of
s vp'etgB  on uea! ctg B. It will be seen
(17 that ¢ depends on ¢ for comstant v, ctg 3
#_ % and ¢ — 4n"lyy ctg B for vga™! ctg B—0
b (the case of an incompressible fluid), When
\\ veatctgB o1, c>yyctgB —a and
\ the fluid free surface around the cone remains

1. undisturbed, which corresponds to the physi-
0 0.5 w_#_ cal pattern of flow,
aigg

Reverting to formula (3, 6), we note that,
Fig. 5 when parameter ¢ is specified and is inde-
pendent of a, the pressure determined
by that formula depends on a. contrary to the other limit case, i, e, of penetration of a
narrow cone at subsonic velocity into a compressible fluid, in which the pressure on the
cone is independent of a [6].
The formula for the pressure on the surface of a blunt cone penetrating into an incom-
pressible fluid [2], obtained from (3. 6) with a — >0, is

p=uwe [1—(3)]" (3.10)

where ¢, as in (3, 6), is the radius of the cone wertted surface, Formula (3. 6) differs
from (3.10) by the presence of the coefficient 2-1n [y*s -+ (1~ V)77 arc cos (y*:)]-1,
which varies from 7 / 4 to unity, hence for the same values of o, I, ¢ and ¢ the
pressure exerted by a compressible fluid is lower than that produced by an incompressible
fluid,

When ¢ is specified in formula (3, 6) by Eq, (3. 9), we obtain for the pressure on the
blunt cone surface the formula 1 P\ 2=t
p=— pcttg P H - (—) ] (3.11)
If in the case of a compressible flmd the rise of its free surface is neglected, then ¢ =
Vo ctg B,and formula (3. 6) assumes the form

_ Vo2 ) r tg 3>2 -’/z( vo ‘ _ ( o )2}-% —x
P=1eEB [1 ( Bof 1‘ \awg3 ™ [1 Tig) | aecos g B (3-12)
If in the case of an incompressible fluid the rise of its free surface is taken into account,
i, e, according to [3] for ¢ = 4y,n~? ctg B, the distibution of pressure at the cone is

e - 50 (58T 019

and, if the fluid rise is neglected, it is determined by formula (3,10), in which ¢ =
Up ctg B is to be set, we have
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2wt rtg B\27 " _
p=amr(t— ()] (3.14)
Let us determine the forces acting on a blunt cone surface at one and the same ins-

tant ? for the four pressures calculated by formulas (3.11) ~ (3. 14), and denote the
results by F,, (n = 1, 2, 3, 4) , respectively, Relating these 1o F,, we obtain

Bt () 2= - [ ()T o]
Fs/F, = (47 F,/F,=1

Curves of the dependence of F,/F, on Vea™! ctg B are shown in Fig. 6, where they
are denoted by 7—4 ,respectively, It should be noted that the difference of hydrody-
namic force F, acting on the surface of the
penetrating cone in these four cases is due
not only to the difference of pressures but,
3 also, to the differences of the cone wetted
surface, These curves show that the behavior
of this force is most accurately and physic-
ally correctly defined by curve I which for
vea~! ctg B — 0 correspondsto the case of
an incornpressible fluid, curve 3 in which
| ‘ Y the rise of the fluid free surface is taken into
N account, while for vea™! ctg B — 1, when

i booe (7,2?)*1 ¢ — a, the point (1, 7 / 4) of this curve
05 I { ‘| yields the similar limit value for the case
- 0.5 U, of c=voctgB >aforvyctgB—a.
In the latter limit case the theory of incom-
Fig, 6 pressible fluid, with the rise of fluid taken
into account (curve 3) yields a value which
is approximately 2, 6 times higher than the limit value shown by curve /. Hence curve
I must be used for the correct determination of hydrodynamic forces within the range
0<LvgatetgB <1, .

We note in conclusion that, when the cone is not infinite and the radius of its base is
equal b, the problem is self-similar only so far as its wetted surface does not reach its
base, where r = b, i.e, up to the instant ?, = b / c. It can be expected that, as in
the case of an incompressible fluid [3}, the force acting atthatinstant on the cone penet-
rating at constant velocity into the fluid reaches its maximum F, (f,). Let us compare
this maximum force with the maximum force F, (¢,) determined for the same prob-
lem by the theary of incompressible fluid [3], with the rise of fluid taken into account
in both cases, Considering that in the case of incompressible fluid the maximum force
is reached at instant ¢, = nb tg B / (4vy), using Eqs, (3.11) and (3,18), we obtain

Fy (b)) — F1(t0) ____( 4o )3_1
~ F1 (to) metg B

where ¢ is defined by Eq. (3, 9). The right~hand side of this expression is a monoton-
ically increasing function of parameter voa™! ctg 3 which for vea™ ctg 8 — 0
tends to vanish and for vea™ ctg B — 1 reaches the value 16172 — {1 =~ 0,62.
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Thus for vy ctg B = a the maximum force derived by the theory of incompressible
fluid exceeds by 62 % that calculated for a compressible fluid,

1,

The author thanks E, I, Grigoliuk and S,S, Grigorian for discussing this problem,
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ASYMMETRIC MECHANICS OF TURBULENT FLOWS, ENERGY AND ENTROPY
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Averaged equations of motion of a turbulized fluid in the presence of a preferred
orientation of turbulent vortices were constructed in [1], By taking account of
an addjtional kinematic variable, the angular velocity of vortex self-rotation,
the system of equations in [1] differs from the earlier theory of Mattioli [2].
The equations from [1] are supplemented herein by a turbulent energy balance
equation in which the work of the moment stresses and the antisymmeuic com-
ponent of the Reynolds stress tensor is taken into account, It is shown that the
inner energy determined by turbulization of the fluid depends on the root-mean-
square values of the ranslational pulsation velocities and the anglular vortex
velocities, The entropy and "temperature” of tizbulization are introduced; the



