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f " / w  z . 2  ~, W = r V 2po 
: i ,  = 

t (t - -  2wo:) (z -'- t) - -  2u'~: 
p = P o r " ,  b = (Po - -  ~ arcsin 

(: + t) ¥ t - -  4wo'- 

This solution is the same as (4. 4). except for the exvression for pressure. 
4 .2 .7 .  The last subgroup with operator X~ + -Ye generates the solution 

e ~ W (r),  q~ = 0 + (I) (r) and p = e ~* P (r).  
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The self-similar axisymmetric problem of pene~ation of a blunt rigid cone into 
a half-space of perfect compressible fluid is considered in linear formulation. 

The problem of penetration of a blunt cone into an incompreuible fluid was 
investigated theoretically [ 1 - 4 ]  and experimentally [3, 5]. This probkm was 
solved for a compre~ible fluid in [6] on the assumption that the radius of the 
intersection circle between the cone and the unperturbed fluid surface incu~ases, 
when the pene~ation velocity exceeds the speed of sound in the fluid (the super- 

sonic case). 
An exact analytical solution of this problem in the subsonic case is derived 

here with allowance for the rise of the fluid free surface in the cone neighbor- 
hood. The dis~ibution of pressure and forces acting on the cone is presented in 
terms of elementary functions, and the rate of increase of the cone wetted sur- 
face radim is determined. It is shown that in the limit case of incompreuible 
fluid the obtained resul~ coincide with published data. while in the other limit 
case the derived solution coincides with that for the case of supersonic penetra- 
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tion. The obtained solution is compared with that known in the theory of incom- 
pressible fluid. 

l .  S t a t e m e n t  o f  t h e  p r o b l e m .  The problem of penetration of a rigid cone 
with vertex angle ~ ~ 2~ at velocity v0 into a perfect compressible fluid which at rest 
occupies the half-space z ~ 0 (Fig. 1). The velocity v0 of the cone is directed along its 

axis which is perpendicular to the plane. 

I x 

Fig. 1 

z = 0  and is assumed Who V o ~ a ( a  
is the speed of sound in the fluid at rest). 
It is further assumed that ~ < ~  I (a blunt 
cone) and that during its penetration into 
the fluid the density of the latter varies in- 
significantly. The subsonic case in which 
v0 c tg  ~ < a is considered. This problem 
is, evidently, axisymmeu'ic and self-similar.  
It will be readily seen from the physical 

pattern of flow that the fluid free surface in the vicinity of the cone will rise during 
penetration, thus increasing the cone wetted surface. Hence the correct statement of 
the problem requires the allowance for the rise of the fluid which, owing to the small-  
hess of angle ~ ,  can substantiaUy increase the cone wetted surface. We dehorn the un- 
known radius of the wetted surface by ct (Fig. l ) ,where  t is the t ime and ct is the 
distance of the point of contact of the fluid free surface from the cone axis (we neglect 
the effect of the spray stream, since for small ~ the vertical component of the spray 
stream momentum is small [3]). The selfosimilarity of the problem implies that c -~- 
const. In solving the hydrodynamic problem we shall provisionally assume that c is a 
given value. Linearfzing the equations of  motion of the fluid and the boundary condi* 
tions ['2], for the velocit  7 vector v -~- {v~ (t, r, z), v: (t, r, z) } and pressure p (t, r, 
z) we obtain the following system of equations and initial and boundary conditions : 

Av  = O%/a20F, Ap = O~p/a20t ~ for z ~ 0, t ~ 0 

v -~Ov/Ot = 0 ,  p -----Op/Ot = 0  for t = 0  (1 . t )  
v: = v 0  for z = O , O ~ r < c t ,  p = 0  for: :  =O, c t < r  

where v and p are related by linearized Euler equations. Furthermore. we stipulate 
that p --~ 0 and v --->- 0 for r z + z 2--~ c~,  and that p and v are i n f e r a b l e  in the 
neighborhood ofthe boundary of the cone wetted surface at z = O and r =  c t ,  and.at the cone 
ver texat  ¢ = 0 and r----0, since this is necessary, Lfa unique solntion is to he obtafned. 

The solution of system (1.1) contains parameter c which is determined by Wagner's 
method [3], using the kinematic  relationship 

t 

- -  ~ v .  (~, ct, O) dT + Vo t = ct tg ~ (i.2) 
0 

between the motion of a particle of the free surface (1"* in Fig. 1) and that of the cone. 

9. R e l a t i o n  b e t w e e n  a x i s y m m e t r t o  a n d  p l a n e  p r o b l e m s ,  a n d  t h e  
m e t h o d  o f  f u n c t l o n a l l y - l n v a r i a n t  s o l u t i o n s .  A method of reducing axi-  
symmetric problems involving wave equations to plane problems was proposed by V.I .  
Smirnov and S. L. $obolev (see Chapter 19 in [7]) by which the solution of the axisym- 
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meu~c problem is derived by the superpueition of solutions of plane problems, We in- 
troduce rile system of Cartesian coordinates ~ z  at angle ¢~ to the z-axis ,  so that 

= x  cos ¢o ~ y sin ¢o = r c o s  (¢p - - ~ ) ,  ~ = - - x s i n e  + y c o s  ~,) = 

r sin (~0 -- o)) 

where r, ~ and z represent a system of cylindrical co~dinares related to the  xyz sys- 
mmbyformulas: x = r c o s c p ,  y = r s i n ~  and z = z .  

Let us consider in the system of co~dinates ~ ]z  the plane solution of the llnearized 
equations of motion of a perfect fluid, such that the velocity vector %'1 and pl~nUre Pl 
are independent of v] and which satisfy the wave equation 

aVIO~ ~ + oV/oz  ~ = oV/a.2at', 

with the velocity vectoe v 1 lying in the ~z -plane and v 1 = {vl.~, vxz }. Then the 

expressions n i 
v = I vx (t, ~, z) d¢o and p ---- p~ (t, ~, z) d e  (2 . i )  

represent the solution of a certain three-dimemional  problem with lineazized equations 
of motion of a perfect fluid, since they are the result ~f superpmition of solutions of 
equatiom of motion. In this case functions v and p satisfy the wave equation with 

three spatial variables x, y and z. For the velocity components v r, vz and v~ and 
for prea3tn~ p we obtain the following expressions (after substituting q~ - -  co ----- 
and raking into account the periodicity of integrands in (2.1)  with respect to ~) :  

v~= 2Sv~.(t, r o o s t ,  z)cos g~d~, v~ = 2~t ,~( t ,  r cos ~'~, 
0 0 

f~ 

v~ = 0, p = 2 .~ p~ (t, r c o s  P., z) dP.. (2.2) 
0 

Hence velocity v and pressure ]3 are independent of q~, i . e .  they are solutions of a 
certain axisymmetric problem with linearized equations of motion of a perfect fluid 
and satisfy the wave equation 

It can be shown that formulas (2.2) establish a one-to-one relationship between solu- 
tions of plane and axlsymmetrlc problems ( *) ,  As in the self-similar problem conti-  
dered in Sect. 1, v and .p are homogeneous functions of coordinates and of the t ime of 
zero reading, hence, the plane, solutions v I and pz must, also, be homogeneous functions 
of the t ime of zero reading, and by the Sobolev-Smimov method of functionally°Invariant 
solutions [7] can be represented by 

v~. (t, ~, z) = R e V  (e),  t,~ ~ (t, ~, z) = Re  W (e) 
p~ (t, ~, z) -= Re U (e) (2.3)  

where U (0), V (0) and PV (0) are analytic functions in region ImO .~'0, and O is 
implicitly demrrnined by the equation 

*) B.V. Kostrov. Cerutin dynamic problems of the mathematical  theory of elasticity. 
Candidate's dissertation, Mcecow, 1964. 
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6 = t - -  O~ - -  z ] / a  - '  - -  e ~ = 0 (2.4)  

The branch of the radical is fixed as follows : the 0-plane is cut along the intervals of 
the real axis ( - -  oo, ~ a -1] and [a -t ,  -4-oo ) and the radical is assumed positive at 
0 -~- O. Equation (2.4)  male the upper semicircle z > O, z s ~- ~2 < a~t 2 of the real 
half-plane ~z on the upper half-plane of the complex variable 8, the semicircle z ~ ~- 
~ ---- a2t ~ on segment [ - - a  -x, a - l j  of the real axis, and segment [ - -  at ,  atJ on the 
remaining pan  of the real axis. According to [7] the plane solution obtained inside the 
semicircle continuously passes through the arc of circle z ~ -+- ~" ~ a~t s into the exte-  
rior of the semicircle along the half-r~ugents defined by Eq. (2. 4), because 0 , as a solu- 
tion of (2.4),  is constant along the latter (it  is assumed that for z ~ a t  the plane 
solution is identically zero). The derived plane solution is. thus, the general solution of 
the wave equation [7]. 

Substituting expressions (2. 3) into (2.2). for the velocity components v~and vz,  and 
pressure p in the self-similar axisymmeu'ic problem we obtain the following formulas : 

v ,  = 2 Re V (0) cos f~d.q, v~ = 2 Re W (0) dQ 
0 0 

p = 2 R e  ~ U (0) d ~  (2 .5)  
0 

where 0 is implicit ly determined by (2.4) for ~ ~ r cos ~ or, for the chosen branch 
of the radical (a "~ 0 0~)'/. and hatf-tangentL explicitly by formulas 

0 = atr cosft -4- L: V a 2t'~ - z ~ - t a c o s "  ~2 
a (r2 coo ~ ~- iz) for a~t 2 > r* cos ~ Q + z ~ 

0 = atr cos Q =~ z ]/'zz' + r'~ COSS Q - -  a~t t 
' a (r~ cos~ f i  + zz) " for a*t ~ < r ~ cos  ~ Q + z*, z < at (2 .6)  

The signs plus and minus in the second of formulas (2. 6) relate, respectively, to 
cos Q < 0 and cos ~ ~ 0, and the radicals" in the two formulas are considered to be 
arithmetic (setting for z ~ at  in formulas (2.2) v 1 ~ 0 and Pl ~ 0, we obtain 
v ~ _ 0 a n d  p ==0) .  

Since v~ and Pl satisfy the linearized Euler equatiom 

Ov~/Ot  = - -  Opl / f~Oz, cgv~ / cgt = - -  Op~ / 00~  

(where 0 is the density of the unperturbed fluid), functions U (0), V (0) and W (0) 
are not independent. The ~uler equations are, obviously, satisfied when 

V' (O) - -  U'  (0) 0 / p, W'  (0) = U '  (0) ] / 'a  -~ - -  0 3 / p (2 .7)  

Thus the solution of the self=similar axisymme~'ic problem for v and p is sought in 
the form (2. 5) in which U (0), l / (0 )  and W (0) are regular functions in the region 
lm 0 > 0 and related by forrrlulas (2. 7), with 0 determined by (2.4) or (2. 6). 

8.  S o l u t i o n  o f  t h e  p r o b l e m .  For solving the considered axisymme~ric prob- 
lem we use the method proposed in [8] for solving similar problems of elasticity. Differ- 
entiatingEqs. (2. 5) for vz and p with respect to t, at z =  0 we obtain 
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i U' Ovz i W' (O) op = 2 Be (0) dQ, - -  = 2 Be d.O. (3. i)  
O"T r cos ~ Ot r ~  

0 0 

We introduce into Eqs. (3.1) the new variable v defined by formula 0 = ,W, by slit- 
ting plane v alon 8 the positive semiaxis [0, -~-oo). The half-plane I m  0 > 0 is then 
imaged in plane v with slit [0, -~ ~o). Taking into account Eq. (2. 7) which relates 
U" (0) and W '  (0), from (3.1) we obtain 

Re j ~'~----~?o = T ~ "  Re j dv = ----rP Or, (3.2) 
1 / ~ - -  ~o - -  2 at 

l l 

v 0 = t  2 / r  2, U ( 0 ) =  U ( ¢ / q = = F ( ~ )  

where F (~) must be a regular function in the plane v outside the slit [0, -~- oo).  For 
the branch of ~adical (a-" - -  v)'/, the slit is made along the interval of the positive 
semiaxis [a -~, -~- c~) and the radical is assumed positive for ~ = 0; to separate the 
single-valued branch of radical (v - -  v0)'/, we make the slit Iv0, -~- c¢) and assume 
the radical to be equal :~ / 2 for ~ ----- 0 . The contour l (Fig. 2) is obtained as fol- 
lows. The contour l 0 along which the integration path [0, .~] of formulas (2.5) for 

® 

7" 
~ _  , T w  

® 

(~,) 
Fig. 2 Fig. 3 

z ~ 0 paues in the 8 -p lane  is shown in Fig. 3. For z = 0 (z --~ -~ 0) the ends of 
contour lo (points L and K) lie within segment [ - - a  - I ,  a -1] and aresymmeu~lo about 
the origin O ---- 0. Hence the substitution O -= ~'/, converts contour I0 into contour 
l which can be represented by a circle of an arbitrary radius R (owing to the analyt i-  
city of F (~) outside the slit [0, ~-  oo)) and two equal lengt~ segments K T  t and 
L T  along the lower and upper edges, respectively, of the slit [0, -~- oo), with points 
K and L coinciding with point ~ - -  ~o. 

To satisfy the initial conditions for Eqs. (3.2) it is nece~ary that for ~0 < a-" the 
integration contour l can be contracted to a single point, i . e .  function F '  (~) must be 
analytic outside the slit [a -2, ~- oo). Ill accordance with boundary conditions the ex-  
pressions for ap / cgt appearing in (3. 2) must vanish for v o < c -z, hence F '  (~) must 
be a regular function outside the slit [c-~, ~- oo). Since the derivative ~b'z / a t  in 
(3.2)  must vanish for ~¢o ~ c-2, the integrand in this expression must be analytic for 
Re  ~ ~ v 0 ~ ¢-,2 and decrease at infinity as o (~-1) in order that the integral along 
the circumference vanishes for R - +  co. We can now set 
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F '  (~) = A (v) (c- '  - -  ~)-~ 

where n is an integer and A (~) is an entire analyt ic  function which does not vanish 
for ~ ----c-=. The condition of  tntegrability o f  pre.~ure at the edge o f  the cone wetted 
surface implies that n ~<~ 2. It will be readily seen from this that  A (~) must be bound- 
ed :  A (v) = A ~ c o n s t  and n = 2. We thus have 

F (.~) = A ~ c  = (c -2 - -  ~ ) -1  + c l  

For z = 0, similarly to formulas (3. 2~ we have 

P = ~'.~o Re ! F (v)d~ 1/'~o Re ! i 
• ~ V ~ - - ~ 0 '  v = =  ,~. z ~ V . ~ _ , ~  ° x 

Integration in (3 .3)  with respect to ~t is carried out along the contour which lie~ on the 
same side of  the real  axis as point ~t = ~. It  follows from (3. 3) that, if  the initial conditions 
are to be satisfied, it is necessary for the integrand$ in (3. 3) to be analyt ic  at point 
v ----0, i . e .  c 1 ---- c z = 0 and, consequently. 

F (v) = A,~c = (c-= - -  v) -1 

which brings formulas (3 .3)  to the form ( 3 . 4 )  
v 

Formulas (3 .4)  show that p vanishes for Vo < c-=. Let us determine constant A from 
the boundary condition that v z = vo for vo > c - '  and z - -  0 .  We have 

I /  

where the integral with respect to ~ can be expressed by 

i V ' ~ d  • T 1 _ ~ I = _ ~  d~ = i V'a"Z--P'd~=B-4-Fo(v) 
(c= - -  p.)= P' = O (c-- - -  I~) ~ ' (c-.~ _ p.)z 

0 0 v ~  

B = - - c  ['~'~/, -~- ( t  - -  y ) -V,  arc  cos (y ' / , ) ] ,  7 = c°'a-' 

T h e  second i n t eg ra l  is i n teg ra ted  a long the h A l f - l i n e  a rg  F. == a r g  ~,. S ince  Fo ('v) 
changes its sign at t ramition t~ough  the slit [c -z,  -~ oo), hence 

I Fo (v) dv 0 c -z for ,v o 
V " ~ -  ~----; 

and we obtain ~'o = 2-~ABg-L From which 

A = - -  v,,p ) f t  - -  "~ 
2;tc [ | " ~  ,"r" arc cos V"~'J (3.5) 

For the dislxibution of  L!ressure p at tke cone wetted surface (v0 ~ c -a) we obtain 
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P = y ~ , t i _  ~ [ 1/.r (~ = r )  + arc cos V'~I 

where p has an integrable singularity at r = ct. 

To determine the pressure at any point.of the half-space z ~ 0 we substitute the vari- 

able ~ == (a -~ -- Os) '/* into formula (2.5) for p and, using the branch of the radical 

(a -~ - -  0~) '/ ', for a'~t t > r ~ ÷ z ~ , we obtain 

I (:a~ - -  tB) d~ 
p =~ 2 A ~ R e  ,~ ( c ~  a"~ .Jr- It t) [ r t a ~ t s ~ - 2 t z t t ~ t ~  (r~ + z~)] 't '  (3.7) 

It 

The contour lx in r e , o n  Be 

tA K l @ 

Fig. 4 

> 0 is shown in Fig. 4 and A is defined by formula (3.5).  
At points K and L we have,  respect ivety ,  ~ = t'~ and 

= ~ ,  where ~ and ~ are roots of  the quadra t ic  u~- 

nomia l  of  the rad ica l  appear ing  in  ( 3 . 7 ) .  
To de te rmine  the s ing le -va lued  branch of the r ad ica l  

in ( 3 . 7 ) ,  we make  a sli t  in the re-plane between points 

L and K (shown in Fig. 4 by the dash l ine) and take that  
branch of  the radical .whose  argument  for rea l  t, 8~ e a t e r  
than a-~ is equa l  n / 2 .  Then,  taking into account  that  
along the different edges of the slit the integrand in (3.7) 

b of the same absolute va lue  but  of  opposite signs and has two s imple  poles at  points 
== ___i(¢-2_a-2)%, and using the residue theorem,  from (3 .7)  we f inal ly  obta in  

- -  ,= , , , ( 3 .8 )  
'2 (Ao" A-  Bo I )  a2 ~ ; ~ " Z  a~  2 (~o"  + Bo") 

r z "f" z ~ < a2t 2, A o = z  z ( c - t - - a  -z) ~ c ~ r  2 - -  t 2, Bo = 2 tz ((c -2 - -  a-") ' / '  

where the radicals  are assumed to be a r i t hme t i ca l .  In par t icular ,  for z --, 0 and r > ¢t 

the r igh t -hand  side o f ( 3 .  8) vanishes .whi le  for z - ,  0 and r < ct i t  coincides  with for-  
rnula (3 .6 ) .  Note that  for r ~ + z s -'* azt z formula (3 .8)  y ie lds  zero, while for c -* a 

from (3. 5) we obta in  A - ,  - -  ~o9 / (4 ha) ,  and at  the l i m i t  (3 .8)  yields  

voPa~t a ~ t :  - -  r ~  ~ z ~. 

P - -  2 (a*.t ~ _  rz)'j, 

This formula is the same as the l i m i t  formula obtained in the solution of  the problem 

of  a blunt  cone penet ra t ion  into a compressible  fluid for c ---- o0 ctg ~ > a, when 
v0 ctg ~ --. a [6] .  In the other l imi t  case (a ~ c~) formula (3. 8) y ie lds  pressure disu~i- 

button for the ease of  Incompressible  fluid. 
The  ve loc i ty  components  Vz and Vr in  region r ~ + z z < a~t s can be de te rmined  in a 

s imi la r  manner .  Note that  for r ~ + z 2 > a2t 2 (a < at) functions vz,  Vr and p vanish, 
s ince the end-poin ts  K and L of  the in tegrat ion contour l~ in the ~ - p l a n e  are at  one 
and the same point  ly ing on the rea l  axis segment [0, a - q  in that  plane (s ince in the 0 - 
plane they l ie  on segment  [ - - a  - t ,  a - q  and are symmet r i c  about point  0 = 0). Conse-  
quently,  by the Caucby theorem the integrals  over the closed contour 11 vanish. 

Let us de te rmine  the rate  o f  increase of  the radius of the wet ted surface ~. Formula 
(3 .4 )  for v z at  the free surface ( v 0 < c  -2) with a l lowance  for (3. 5) a.~umes the form 



P e n e t r a t i o n  o~ a c o n e  ln~o a co~q)reselble ~ l u ~ d  ~ 

ct e t ( t - - T )  I ~ H ( a t - - r )  

where I"I (at  ~ r) is the Heaviside unit function, Substituting this expression for v z 
into ( I .  2) and integrating, we finally obtain the exl~e, sslon 

1 

+ ?'/, ( l  - -  7) -~-  arc  cos  (?'/,) = 2voa -1 e t g  ~ (3.9) 

which defines the relationship between v0a -x e t g  ~ and y .  The numerical  solution 
of  Eq. (3. 9) is presented in Fig. 5 in the form of a curve showing the dependence of  

vo 1 c tg ~ on v0a -I  c t g  ~. It will be seen 
1"5 ct_~.~, that c depends on a for constant u 0 e t g  
# I/, and c ~ ~ n - I u o  e tg  ~ for voa -I  e t g  ~--,-0 

. ~  (the c u e  of  an incompressible fluid). When 
- " ~ _  voa -1 e t g  ~ --~ 1, c ~ v o c t g  ~ ~ a and 

the fluid free surface around the cone remains 
~ _ _  undisturbed, which corresponds to the physi- 1.0 
l / .  cal pattern of flow. 

Reverting to formula (3. 6), we note that, 
Ftg. 5 when parameter c is specified and is inde- 

pendent of a, the pressure determined 
by that formula depends on a,  contrary to the other l imit case, i . e .  of  penetration of  a 
narrow cone at subsonic veloci ty into a compressible fluid, in which the pressure on the 
cone is independent of  a [6]. 

The formula for the pressure on the surface of a blunt cone penetrating into an incom-  
pressible fluid [2]. obtained from (3. 6) with a --~ ~ ,  is 

[ ()1 P = ' ~ V o p C  t - -  ~- (3 . t0 )  

where ct, as in (3.6) ,  is the radius of  the cone wetted surface. Formula (3.6)  differs 
from ( 3 . 1 0 ) b y  tim presence of  the coeff icient  2-1~t [~tt, Jr- ( l - -"~)- ' / '  a re  cos (Vv=)] -1, 
which varies from n / 4 to unity, hence  for the same values of u0, r, t and c the 
pressure exerted by a compressible fluid is lower thanthat produced by an incompressible 
fluid. 

When c is specified in formula (3.6) by Eq. (3.9), we obtain for the preuu~ on the 

blunt cone surface the formula i PC 2 tg ~ rl / r \ ~-l-'/, 

If  in the case of  a compressible fluid the rise of its free surface is neglected,  then c = 
v 0 c t g  ~, and formula (3.6)  assumes the form 

vo-~P[ /~'t'g~'~21~' ~o , [ { ~:o ~ ' l  "~" "o I- '  
P = t"~" ~ - -  k "o"'~'~'/ J ~atg-----~ _i  - -  \ a - " ~ l  J a r e C ° S a t g  ~1 (3.12) 

If  in the case of  an incompressible fluid the rise of  its free surface is taken into account,  
i . e .  according to [3] for c = 4yon -~ e t g  ~, the distribution of  pressure at the cone is 

given by 8v0=p [I - -  lartg'~'] -';' 
P = ~ \ ~ot / (3.13) 

and, if the fluid rise is neglected,  it is determined by formula (3.10),  in which c = 
L'o c t g  ~ is tO be set, we have 
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2v°2° FI - -  [r  tg B~"I -'/' 
P = ~ L -  \ ~ o t / j  (3.14) 

Let us determine the forces acting on a blunt cone surface at one and the same ins- 
tant t for the four pressures calculated by formulas (3.11)  - (3.14),  and denom the 
results by F n  (n = i ,  2, 3, 4) ,mapect ively .  Relating these to F~, we obtain 

= 4 \ ~0 ] '  " ~ - - - - - - ] "  Jr- \ = t - - T ~ / J  arc c°sst--'~" 

Fs / F4 = (41 x) s, F4 / F4 = i 

Curves of  the dependence of  Fn/$ '  4 on b'0a - I  c t g  ~ are shown in Fig. 6, where they 
are denoted by l - - d  , respectively. It should he noted that the difference of hydrody- 

namic  force Fn  acting on the surface of the 
Z.5 

(~f ,_.. . . . . .  3 

r.5 ~ . . . . . . . .  

, a  i 

0.5 v. 
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pene~ating cone in these four cases is due 
not only to the difference of  pressures but ,  
also, to the differences of  the cone wetted 
s~face ,  These curves show that the behavior 
of  this force is mo~t accurately and physic- 
ally correctly defined by curve / which for 
%a -I c t g  ~ --~ 0 corresponds to the case of  
an incompressible fluid, curve 3 in which 
the rise of the fluid free surface is taken into 
account, while for v0a -~ c t g  ~ --~ J, when 
c ~ a, the point ( i ,  ~ / 4) of  this curve 
yields the similar l imit  value for the case 
of c = voctg~a forv octg~--~a. 
In the latter l imit  case the theory of  incom-  
pressible fluid, with the rise of  fluid taken 
into account  (ctawe 3) yields a value which 

is approximately 2 .6  ~mes higher than the l imit  value shown by curve I .  Hence curve 
/ must be used for the correct  determination of hydrodynamic forces within the range 
0 < v0 a -I otg ~ < i .  

We note in conclusion that, when the cone is not infinite and the radius of  its base is 
equal b, the problem is selfosimilar only so far as it~ wetted surface does not reach its 
base, where r = b, i . e .  up to file i n ~ n t  t o - -  b / c. It can be expected that, as in 
the case of  an incompressible fluid [3], the force acting at that instant on the cone penet-  
rating atconstant  veloci ty into the fluid reaches i~ maximum F 1 (to). Let us compare 
this maximum force with the maximum force F s (tl) determined for the same prob- 
lem by the theory of  incompressible fluid [3]. with the rise of  fluid taken into account  
in both cases. Considering that in the case of  incompressible fluid the maximum force 
is reached at instant t I ----- n b  t g  ~ / (4v0), using Ec~. (3.11) and (3 .13) .we  obtain 

~', (t,)-- F, (to) [ 4vo ~2 i 

where c" is defined by Eq. (3. 9). The right-hand side of  this expression is a monoton-  
ically i.c~easing function of  parameter voa - I  c t g  ~ which for voa - I  c t g  ~ --~ 0 
tends to vanish and for voa -I  c t g  ~ --*- i reaches the value 16~I -z - -  i ~ 0 ,62.  
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Thus for v0 c tg  ~ = a the maximum force derived by the theory of incompressible 
fluid exceeds by 62 % that calculated for a compressible fluid. 

The author thanks E. I. Grigoliuk and S. S. Grigorian for discussing this problem. 
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Averaged equations of motion of a turbullzed fluid in the presence of a preferred 
orientation of turbulent vortices were consu'ucted in [1]. By taking account of 
an additional kinematic  variable, the angular velocity of vortex seLf-rotation, 
the system of equations in [1] differs from the earlier theory of Mattioli [2]. 

The equations from [1] are supplemented herein by a turbulent energy balance 
equation in which the work of the moment  stresses and the antisymrnetric com- 
ponent of the Reynolds stress tensor is taken into account. It is shown that the 
inner energy determined by turbulization of the fluid depends on the root -mean-  
square values of the translational pulsation velocities and the anglular vortex 
velocities. The entropy and "temperature" of turbulization are introduced; the 


